
Developmental Modelling with SDS

Benjamin Porter and Jon McCormack

Centre for Electronic Media Art
Monash University, Clayton 3800

Victoria, Australia

Abstract

This paper describes modelling methods based on biological development for use in computer graphics applications, specifically the
automated growth and development of complex organic shapes that are difficult to model directly. We examine previous approaches,
including grammar-based methods, embedded systems and cellular models. Each of these system can be classified as endogenous
(internally determined) or exogenous (externally determined), with some models exhibiting features of both. We then introduce a
new model, the Simplicial Developmental System (SDS), which simulates individual cells embedded in a physical environment,
with cell division, movement and growth controlled by morphogenetic chemical simulation. SDS uses a tetrahedral mesh as its base
representation for geometric modelling and physical simulation. Cell growth, movement and division is determined by simulating
chemical morphogens that are diffused between cells according to a set of user defined rules. We discuss the advantages and
disadvantages of this model in terms of the competing goals of user control, developmental complexity and open-ended development
(the ability to generate new component structures without explicit specification). Examples highlighting the strengths of the model
are illustrated.

Keywords: developmental model, morphogenesis, physical simulation, tetrahedral mesh

1. Introduction

One of the greatest challenges in biology is understanding
the mechanisms that enable a single, fertilised cell to develop
into a complex, multi-cellular organism. The developmental
processes that lead to interacting functional components and
self-organising, heterogeneous structures are complex and nu-
merous, remaining the subject of on-going research. In this
paper we focus on systems, inspired by biological processes
of development, that begin with concise specifications for ini-
tial conditions and developmental rules, then proceed to grow
and develop autonomously in simulation. Our application is in
computer graphics, so we concentrate on the process of grow-
ing three-dimensional form rather than a complete simulation
of biological function. Our goal is to define systems that allow
the specification of complex organic shape and form, removing
the tedium of trying to assemble such forms manually.

The process of simulating development in this more gen-
eral context is referred to as developmental modelling. As a
modelling methodology, developmental models1 offer a vastly
different modelling paradigm over commonly used methods in
computer graphics. ‘Traditional’ modelling focuses on pro-
cesses organised around the design of artefacts: the artist con-

1The term ‘model’ has a dual, context dependent meaning in this paper: in
a developmental context it means a formal mathematical or procedural specifi-
cation for a system; in a computer graphics context it means a spatiotemporal
geometric structure generated for image synthesis and animation purposes (e.g.
a time-dependent geometric mesh). We anticipate the reader will distinguish
the meaning based on context.

Figure 1: (left) An abstract organic form generated using the system intro-
duced in this paper. (right) A related form manufactured in stainless steel (by
Shapeways [1]).

ceptualises a form, and then proceeds towards the goal of build-
ing the form explicitly. This is normally achieved through the
direct instantiation and manipulation of geometry and texture
to achieve the finished result. Procedural modelling uses the
specification of procedures that automate the geometry and tex-
ture building process. Generative models exploit the genera-
tive properties of computation to achieve database amplifica-
tion [2], where complex structures are built from relatively sim-
pler (often several degrees of magnitude) specification. In this
sense, developmental models are a subset of generative models.

There have been two complementary approaches to mod-
elling development in computer graphics. In endogenous sys-
tems, development originates from, and is driven by, internal,

Preprint submitted to Computers and Graphics July 28, 2010

rule-based mechanisms. Typically, the rules are specified by
the user of the system. Endogenous models work well for the
procedural specification of complex, static or time-varying ge-
ometry, however there are limitations in how models generated
by the system can be affected by, and interact with, their en-
vironment. For a system to develop this way – an exogenous
system – the form and space in which it develops must be cou-
pled.

In this paper we will first review some of the literature for
both endogenous and exogenous methods, with a brief discus-
sion on the advantages and limitations of each approach (§2). In
§3 we introduce the Simplicial Developmental System (SDS), a
tetrahedral mesh based system that supports exogenous growth
through the physical simulation of a developing 3D form (e.g.
Figure 1). Finally, §4 discusses implications and further devel-
opment of the SDS.

2. Modelling Development

There are many established systems in computer graphics
that incorporate aspects of biological development for mod-
elling shape. The fields of theoretical biology and artificial
embryology also contain models that are useful when consid-
ering shape formation from a developmental perspective. Sur-
veys that cover these models in the literature are numerous [3,
4, 5, 6, 7, 8, 9, 10, 11] and hence only a brief overview is given
here, with discussion pertinent to the model introduced later in
the paper.

2.1. Grammar-based Approaches

L-systems, introduced by Lindenmayer [12] to model the
development of multicellular organisms, have been extensively
used to simulate the development of trees, herbaceous plants,
and many other biological structures. Early L-system models
were endogenous, operating at a symbolic level, with compo-
nent parts and their development specified using a set of distinct
symbols, and the development simulated by parallel re-writing
of those symbols. As development proceeds the set of active
symbols changes in discrete time steps. Symbols representing
component parts are converted to geometry as a unidirectional,
post-development operation, i.e., no information from the envi-
ronment or built geometry flows back to the symbols to affect
their development.

Researchers recognised these limitations, over subsequent
years devising enhancements and additional mechanisms to cir-
cumvent them. The primary goal in computer graphics applica-
tions has been the synthesis of visually realistic models, with an
emphasis on the final, rather than developing, geometric form.
L-system extensions include: continuous mechanisms [6, 13];
the modelling of physical and mechanical effects [14, 15]; spec-
ifying explicit hierarchy [16] and coupling the developmental
process more closely to the environment [17]. These extensions
address specific issues, a number incorporating exogenous de-
velopment, but they diminish the simplicity and elegance of the
original formalism.

In general, L-systems simulate growth and development at
an abstracted macro level (e.g. florets, meristems, leaves, branch-
ing segments), due to the complexity of defining interactions at
the micro level (cells, molecules). The appropriate choice of
macro-level abstraction relies on a structural understanding of
the entity being modelled, along with a means of inferring de-
velopmental relationships at the level chosen. In general, this is
an ill-defined and ad-hoc process, making it difficult for com-
puter graphics users without significant experience to devise
grammars that generate the desired form.

L-systems abstract the concept of development to that of
replacement of parts by other parts. In this respect they are re-
lated to other grammar-based approaches such as shape gram-
mars [18], graph grammars and graph-based representations
[19]. They have also been generalised to grammars that operate
on polygonal surface representations [20, 21, 22]. These meth-
ods address the topologically-focused bias of tree L-systems
and provide generative methods for more complex geometric
surfaces. Developments have enabled the application of grammar-
based methods to a broader class of shape and form, such as
architectural design [23] and legged animals [24].

2.2. Embedded Models

Many systems directly embed development in a spatial en-
vironment, an idea that dates back many years in graphics [25,
26]. A structure that is being generated within a space can be
affected by its own parts, other static and dynamic objects, and
environmental factors such as light and gravity. These inter-
actions provide a mechanism for directing the growth of spe-
cific forms, and also result in an emergent complexity difficult
to obtain using non-embedded systems. While embedded sys-
tems appear to be a natural and biologically realistic approach
(after all, all real biological growth is embedded in a physical
environment), taking full advantage of this embedded approach
presents a number of challenges [27], particularly if the open-
ended complexity of real biology is sought.

Cellular automata models demonstrate that exogenous growth
factors, including environmental effects and spatial limitations,
can contribute greatly to the complexity of a developing form
[26, 28, 29, 30, 31, 32, 33]. Even if the mechanism behind the
development is simple, environmental interaction can result in
complex creations that far exceed the simple specification from
which they emerge [34, 35].

A developmental model of accretive growth that illustrates
the combination of a geometric surface-based developmental
model with a physical model of nutrients and hydrodynamics is
presented by Kaandorp and Kübler [36, 37]. These experiments
reinforce the notion that a simple growth logic combined with
a physical model can result in complex organic forms. This is
further exemplified by Combaz and Neyret, who demonstrated
a system that generates rich and abstract organic form through
physical simulation and growth [38]. The user paints growth
chemicals onto a surface, which causes that part of the surface
to expand and grow, resulting in naturally wrinkled surfaces
due to growth-induced deformation. Similar systems in com-
putational biology can also be found [39, 40].

2

2.3. Cellular Models
Cellular models utilise the idea of building complex struc-

ture from a single underlying primitive – the cell – which typ-
ically divides, moves or changes based on an abstraction of
chemical signalling or protein synthesis. Some of these mod-
els are embedded in restricted spatial arrangements (cartesian
grids, isospatial sites), others operate at a more symbolic level.
In computer graphics applications they have been used to model
three-dimensional form and two-dimensional textures.

Fleischer and Barr [41] introduced a cellular programming
model that could grow cellular texture elements over pre-defined
surfaces [42]. Each cell consisted of a cellular program (a time-
varying first order differential equation) that could control its
placement over the surface based on, for example, simulation
of chemical reaction-diffusion over the surface. The method of-
fered capabilities such as cell movement, adhesion and changes
in size due to cell-cell interaction.

Kumar and Bentley used a method of ‘oriented cell divi-
sion’ controlled by a simple genetic regulatory system as a basis
for an evolutionary form design system [9]. Each cell was rep-
resented by a sphere with isospatial sites for cell division. They
experimented with several cell division methods, but were only
able to evolve simple shapes such as a line of cells and com-
pound sphere, partially due to the difficulty of defining fitness
measures for evolving development into more complex shapes.

Miller describes an embedded, lattice-based cellular system
that uses genetically evolvable feed-forward Boolean networks
for each cell’s program [43]. Binary state information is used
as a model of ‘chemical signalling’ and the networks determine
changes in cell state and growth. Miller’s goal was to overcome
the difficulty of defining the cell rules that lead to a specific
pattern, inherent in systems such as that of Fleischer and Barr.
Using an evolutionary algorithm, he was able to evolve a 2D
cell pattern that resembled the French flag from a single zygote
cell.

Some developmental models incorporate hierarchies as an
explicit feature, for example, P-systems [44], Vaario’s Multi-
Level Interaction Simulation language (MLIS) [16] and Mc-
Cormack’s Cellular Developmental Model (CDM) [45]. To
date, the predominant applications for P-systems and MLIS
have not been in the creative domain (P-systems have been used
primarily for studying computation and MLIS was designed
to evolve artificial neural networks). CDM, however, was de-
signed to generate complex time-varying 3D form.

CDM uses a hierarchical specification of developing cells,
each with a set of predicate-action rules. In addition to these
rules, cells contain a continuous state vector that is updated as
the cell develops and rules are applied. Rules control changes
in cell state, and if certain conditions are met, cell division, re-
placement or death. Rather than representing cells as simple
geometric primitives, geometry in CDM is built using gener-
alised cylinders, a fundamental design element in the functional
morphology of many species [46]. Sequences of cells are inter-
preted as instructions to a state machine that builds the geom-
etry. The hierarchical specification of the CDM allows low-
level details of model construction to be encapsulated, parame-
terised, and reused by higher-level cells that specify body parts

and other arrangements, overcoming the problems with single
macro-level specification discussed in §2.1.

Developmental complexity is reflected not only in the num-
ber of individual parts that make up a model, but also in tempo-
ral developmental interactions. While L-systems, for example,
are capable of increasing the number of developing symbols
discretely over time, continuous state systems, such as CDM
exploit the non-discrete, temporal nature of the development,
allowing animation effects in models such as continuous growth
or simulating the gaits of legged figures.

While CDM is a flexible and powerful method for develop-
mental modelling of time-variant natural forms, it still shares
with its predecessors some of the limitations of endogenous
systems. That is, development is at best only partially em-
bedded in the environment of final representation. Cells de-
velop in structures with limited spatial relations, hence physi-
cal relationships may influence development. However, a cell
may represent complex geometric development that is realised
‘post-development’, making physical interaction with the envi-
ronment that affects development difficult. While physical pa-
rameters can be fed back into cell development (e.g. tropisms,
chemical gradients), physical interaction between the develop-
ment process and the geometry it generates is limited.

One the other hand, fully embedded cellular systems (such
as Miller’s Boolean network cells) trade developmental and vi-
sual complexity for spatial interaction. The emergent nature of
spatial interaction makes it difficult to intuitively design under-
lying rules that will grow specific forms, hence the use of evo-
lutionary searches to try and find the rules necessary to grow
specific shapes.

3. The Simplicial Developmental System

A new system, the Simplicial Developmental System (SDS),
was designed to address environmental and physical effects on
a growing structure, with the goal of overcoming the limitations
discussed in the previous section. SDS models a developing or-
ganism as a simplicial complex within a spatial environment.
More specifically an organism in k dimensions is a collection
of connected non-overlapping k−simplexes joined together by
k − 1 simplexes. In 2D this is a collection of triangles con-
nected by their edges and in 3D it is a collection of tetrahedra
connected by their faces. Driven by an internal program, the
cells of the organism grow, divide and move – transforming the
simplicial complex. Through a morphogen-based cell commu-
nication model, cells can coordinate their activity and develop
coherent modules within the larger organism.

A mass-spring model defines energy minimising forces that
act upon the simplicial complex, resulting in a soft-body elastic
appearance. Additionally a non-overlap constraint results in a
surface that interacts in space. Other spatial and physical el-
ements such as static geometries, tropism sources, directional
gravity, or even other developing organisms can be included in
the simulation environment. This results in a type of exogenous
complexity that is difficult to achieve with previous endogenous
methods, such as CDM and L-systems, but still permits a rela-

3

(a) (b) (c)

Figure 2: An example SDS organism. It has (a) vertices, edges and (b) tetrahe-
dra. It also has (c) spherical cells. These are all views on the same structure.
There is a one-to-one mapping between cells and vertices, for example, vertex
v corresponds to cell c.

tively flexible degree of control that was often lacking in prior
exogenous systems.

SDS was developed with three dimensional form genera-
tion in mind, however it can be instantiated in either two or
three dimensions. The discussion here is limited to the three
dimensional case: SDS3. Details on the two dimensional case,
SDS2, can be found in [47]. The basic concepts in SDS are
the organism and the cell. An organism is composed of cells
that are spatially situated and topologically related through the
geometry which transforms over time (§3.1). A physical model
(§3.2) uses the geometry and a mass-spring model to give the
organism a dynamic elastic behaviour. The final component of
the system is the process model (§3.3), which defines the cells
as individual agents, communicating with each other and per-
forming various actions that drive the geometric transformation
of the organism. Each of these aspects are now considered in
turn, followed by some examples (§3.4).

3.1. Geometry

A shape in SDS3 is represented as a set of connected non-
overlapping tetrahedra joined to each other by their faces. An
organism consists of a set of cells, with each cell corresponding
to a unique vertex of the organism’s shape. Figure 2 illustrates
an example organism and its shape. The edges of the shape de-
fine a topology amongst the cells – if an edge connects two cells
then those cells are topological neighbours. This shape repre-
sentation has many benefits including conceptual simplicity, the
ability to represent detail over many scales, and the ability to
model arbitrary forms.

In SDS, the starting geometry of an organism is usually very
simple. This initial state is analogous to an axiom in L-Systems
or the root system of CDM. Through a set of local transforma-
tions the geometry gains complexity. These transformations are
cell division, cell movement and cell growth.

3.1.1. Cell Division
Cell division is the primary transformation; it adds new

cells, edges and tetrahedra to the geometry, providing the ac-
cumulation of complexity over time. A cell may elect to divide
in a specific direction, at which point it is removed and replaced
with two or more cells. The tetrahedral complex is modified to
accommodate them. Geometrically, the new cells occupy dif-
ferent positions and have an equal distribution of the mass of

the original cell. Topologically, the new cells are neighbours
and have the local neighbourhood of the original cell distibuted
evenly amongst them. An internal cell can divide in any direc-
tion, whereas a surface cell can divide tangential to the surface
or perpendicularly outwards or inwards. An ideal transforma-
tion would minimise sudden jumps in the physical model and
localise changes to the topology of the system as much as pos-
sible.

Internal cell division was originally modelled in SDS3 by
subdividing a tetrahedron adjacent to the dividing cell; however,
this resulted in a large variation of vertex degree. This is unde-
sirable as it decreases the stability of the physical model. The
division algorithm was then modified to achieve better vertex
distribution through optimal tetrahedralisation. This algorithm
is as follows:

1. Let c be the dividing cell, and d be the desired direction
of division

2. Let Tc be the set of all tetrahedra adjacent to c
3. Let F be the hull surrounding ∪Tc

4. Remove ∪Tc and c
5. Add two cells a and b, with ax = cx +εd and bx = cx−εd,

where ax, bx, cx are the positions of the cells and ε is such
that a and b are contained within F

6. Tetrahedralise the structure F ∪ {a, b}

This last step can be performed in a number of ways. We chose
to generate the delaunay tetrahedralisation using an existing
tetrahedralisation library, Tetgen [48].

Following the tetrahedralisation phase, the mass of the mother
cell cm is distributed evenly amongst the daughter cells, am =

bm = cm/2. The radii of the new cells are then computed from
these masses assuming a uniform density (e.g., am = 4

3πa3
r).

All new tetrahedra and edges then have their rest sizes calcu-
lated (see §3.2). This allows the local volume to be preserved
and existing stress the occurs in that area will be transferred into
the new configuration.

Cells on the surface can be similarly divided, with the im-
portant observation that c is now on the boundary of Tc. Hence
we must remove those faces of F that are adjacent to c, result-
ing in an open hull. The resulting structure F ∪ {a, b} can be
tetrahedralised using a variety of different methods, and again
Tetgen was used for this.

3.1.2. Cell Movement
Given a set of cells, the simplicial complex defines the topol-

ogy amongst them. As cells move through space the simplexes
(tetrahedra) change shape and occasionally become flat (Figure
3). When this occurs the topology changes via local adjust-
ments to the structure. At every time step, we detect whether
the signed volume of each tetrahedron has become negative.
The signed volume of a tetrahedron, t, is:

vol(t) =
1
6

(v1 − v0) · ((v2 − v0) × (v3 − v0)), (1)

where the vi are the positions of the four vertices of the tetrahe-
dron. An inverted tetrahedron is one where vol(t) ≤ 0, and the
time of inversion occurs at the point when vol(t) = 0.

4

Case 1 Case 2

Figure 3: Two different situations that cause a tetrahedron to become flat. Case
1. A vertex enters the opposite face of the tetrahedron. Case 2. An edge
intersects the opposite edge. These cases can be distinguished by observing
that if any vertex of the tetrahedron lies within the face opposite then Case 1
has occurred, and if not then Case 2 has occurred.

Multiple tetrahedra may invert during one single time step.
To deal with this we rewind the simulation back to the first in-
version, perform a movement transformation, and then restart
the simulation from that point. Given that we are at time step
u2 and the last time step was u1, for each inverted tetrahedron
t, we compute the time u that the inversion occurs by assum-
ing linear motion of the vertices and solving vol(t) = 0. This
equates to solving the following cubic (discarding the roots that
fall outside the interval [u1, u2]):

(v1(u) − v0(u)) · ((v2(u) − v0(u)) × (v3(u) − v0(u))) = 0,

where:

vi(u) = vi(u1) +
u − u1

u2 − u1
(vi(u2) − vi(u1)).

Restarting the simulation from the first inversion is not ef-
ficient if there are many inversions occurring in one time step.
This problem has also been identified in the collision literature
and some systems solve it by handling multiple collisions at a
time [49]. In SDS, however, handling multiple inversions si-
multaneously is non-trivial because of the topological modifi-
cations involved. More specifically, our movement transforma-
tions given below use the assumption that there are no other
inverted tetrahedra besides the target one in order to enumerate
the topological configurations that arise. We now discuss the
transformations of the two inversion cases illustrated in Figure
3).

Case 1. This occurs when a vertex in a tetrahedron attempts to
pass through the opposite face, and results in the transformation
described in Figure 4. The figure illustrates the case where nei-
ther v nor f lie on the surface. If v lies on the surface then the
transformation is exactly the same. If f is on the surface then
t′ doesn’t exist and hence new tetrahedra aren’t generated. If v
and f are both on the surface then the transformation cannot be
applied (as this would result in an infinitely thin section). This
situation has yet to arise in the simulations performed; however,
if it does then another transformation could be designed.

Case 2. This case occurs when opposite edges in a tetrahedron
intersect. Let these edges be named eu and el respectively. Con-
sider the case where eu and el are not on the surface, resulting
in a closed hull of all tetrahedra attached to either edge (see

(a) (b) (c) (d)

Figure 4: Case 1. (a) Consider a tetrahedron t and a vertex v. Let f be the
opposite face. (b) Let t′ be the tetrahedron that is joined to face f , and v′ be the
vertex in t′ that is opposite to f . (c) v is assumed to have just intersected face
f . (d) We remove f and t but keep the faces adjacent to v. We then add a new
edge connecting v and v′ thus implicitly tetrahedralising the hull of t ∪ t′.

(a) (b) (c)

Figure 5: Case 2. (a) Consider the tetrahedron in the diagram. Call its upper
edge eu and its lower edge el. (b) Create the sets U and L by considering all
tetrahedra that share edge eu and el respectively. (c) Consider the hull around
the union of those sets, U ∪ L. When the tetrahedron’s volume becomes zero
the task is to tetrahedralise the hull of U ∪ L.

Figure 5). The mesh is transformed at the time of inversion
by removing all tetrahedra within the hull of U ∪ L and then
tetrahedralising the empty space formed. Tetgen was used to
generate the delaunay tetrahedralisation of the empty hull. In
general any tetrahedralisation approach will work, with a trade-
off existing between running speed and quality of tetrahedra.
If eu or el are on the surface then the hull is not closed, and
additional tetrahedra must be added to cover each edge before
applying the method above.

3.1.3. Cell Growth
Cells have a radius and mass. These are used by the phys-

ical model to determine the dynamics of the organism. By
changing size, cells can affect the lengths of edges and the shape
of tetrahedra, allowing the development of different sized re-
gions. Hence one part of an organism can be coarsely modelled
with large tetrahedra, while simultaneously another part can
have many small tetrahedra modelling smaller features. This
is a primary benefit of the tetrahedral complex representation,
as opposed to, for example, a voxel-based representation. The
relationship between cell size and the shape of an organism is
discussed next.

3.2. Physical simulation

SDS incorporates a physical model in order to generate or-
ganic and natural-looking forms. The approach can be classi-
fied as a mass-spring model [50], a popular technique that has
been used previously to model cellular complexes [22, 51, 52].

5

Each cell c has a radius cr and a mass cm, where cm ∝ cr
3.

Every edge is modelled as a spring. While under compression
the spring simulates internal cell pressure and under tension
simulates cell adhesion. Following the approach of Teschner et
al. [53] tetrahedra also resist compression and tension by mod-
elling them as generalised springs. The energy within such a
spring s can be defined by generalizing Hooke’s Law using the
following potential energy equation:

E(s) =
sk

2
(
V(s) − R(s)

R(s)
)2,

where sk is the spring stiffness, V(s) denotes the current size,
and R(s) denotes the rest size. The difference between the two
sizes is normalised to make the spring stiffnesses scale-free as
in [53], this allows us to use the same stiffnesses throughout
the entire structure. For an edge, e, connecting cells a and b,
V(e) = |ax − bx| and R(e) = ar + br. For a tetrahedron, t, we
have V(t) = vol(t) (Equation 1) and R(t) as shown in Appendix
A. At each time step the force from each spring, s, acting on
each cell, c, is computed as:

Fs(c) = −
∂E(s)
∂cx

Fs(c) can be understood as the direction and magnitude that c
has to be pushed in one particular instant in order to minimize
the energy of the spring. For each cell, all the forces from all
the springs adjacent to it are summed, and then integrated to
obtain an updated velocity and position.

An adaptive Verlet integration technique [54] was used as
it has been shown to be efficient and sufficiently stable for this
type of model [53]. An adaptive step size is necessary because
the topological cell movement transformation may require the
time step to be modified (§3.1.2). Damping is incorporated into
the system as both damping on the tetrahedral springs and vis-
cous damping. The spring stiffness and damping coefficients
could easily be specified per spring, but for the experiments
presented here, uniform spring stiffness and damping coeffi-
cients are used for the springs on the surface, and another set
for the internal springs. The actual coefficients vary from ex-
periment to experiment and generally have to be fine-tuned to
achieve the desired results.

So far we have described a model that moves cells around
space based on mass-spring equations. This correctly simulates
the interactions between topologically adjacent cells, but fails
to capture the interactions between cells that are spatially ad-
jacent. If a surface cell collides with another part of the sur-
face we would expect an interaction. The simulator that has
been built uses the collision detection and response scheme of
Teschner et. al. [55, 56] to prevent surface cells from pene-
trating another part of the surface. The same system is used to
confine the organism within a physically bounded region, and
to model collisions with other objects in the world.

3.2.1. Initial Conditions and Spring Multipliers
The SDS simulator takes as input a tetrahedral complex

generated by Tetgen from a surface mesh. To convert this to

an organism we compute the radii (and hence mass) of all cells.
This is done based on the edge lengths, computing the radius of
a cell, cr, as:

cr =
1
|N(c)|

∑
c′∈N(c)

1
2
|cx − c′x|,

where N(c) is the set of all neighbours of c. From the cell
radii we then compute the rest sizes, R(s), for all edges and
tetrahedra. Initially this procedure seemed adequate, however,
importing a tetrahedral complex that has non-regular tetrahedra
(a common occurrence) resulted in a deformation of the initial
shape. This is undesirable from a control point of view, espe-
cially as we often begin with a sphere and wish to preserve its
smooth surface. To solve this issue we could set R(s) to be
equal to V(s) when importing the complex; however, this solu-
tion is inadequate as cells often change size and R(s) is hence
recalculated. To handle this, we introduced a spring multiplier
constant, sm, that is initialised as sm = V(s)/R(s). Then when
querying the rest size for the energy calculations, we use a mod-
ified rest size: R′(s) = smR(s). We now discuss our model of
cell behaviour.

3.3. Process
From the process perspective cells are viewed as autonomous

individuals executing cell programs within the simulation, sim-
ilar to CDM. Existing methods of modelling cell processes in-
clude programming languages [57], GRN-based network mod-
els [58, 59, 60], and rule-based techniques [61]. The effec-
tiveness of the latter inspired the model used here. A simple
morphogen and rule-based approach to modelling cell state and
behaviour is used. Given a set of morphogens Φ = {φ1, . . . , φn},
each cell, c, contains a quantity of each, cφi , bounded above
by the cell volume. Morphogens can be created and destroyed
within cells, and isotropically diffuse between adjacent cells.
Diffusion and decay of morphogens are modelled using the stan-
dard particle diffusion equation:

∂cφ
∂t

= D∇2cφ −Ccφ,

where cφ is the amount of morphogen φ in cell c, D is the diffu-
sion rate and C is the decay rate. Each morphogen has its own
diffusion and decay rates. This equation is approximated using
the discrete Laplacian:

∇2cφ =
∑

n∈N(c)

min(nφ, vol(c)) −min(cφ, vol(n))
|cx − nx|

,

where N(c) is the set of cells adjacent to c and vol(c) = 4
3πc3

r .
For simplicity, the morphogen equations are solved in step with
the physical simulator using the explicit Euler method. At the
end of a simulation time step the values of the morphogens may
activate a set of rules. For example, the following rule:

cφ > .5→ divide(∇φ),

specifies that a cell, upon becoming half full of morphogen φ,
should divide in the direction where φ is greatest. The speci-
fication of the rules and parameters are the user’s interface to

6

Figure 6: A starfish-like form grown with the SDS2 system. Here we are visual-
ising the cells as polygons, where polygons are adjacent only if there is an edge
between the cells in the corresponding (two-dimensional) simplicial complex.

the system. Having now discussed all the major components of
SDS, we next provide some examples of how the system can be
used generate organic forms.

3.4. Examples
In a previous paper [47] a model of primitive limb growth

for SDS2 was presented (see Figure 6). This limb growth model
has been adapted and simplified for the 3D system and the ex-
amples presented here use a derivative of this model. For a
discussion of the biological inspiration for the model we refer
the reader to the original paper.

There is only one morphogen: φ. Let ct be a cell state vari-
able, equal to 0 or 1, that indicates whether a cell is a growing
tip or not. The rules are:

r1 : ct = 1 → cφ = 1

r2 : ct = 0 & cφ > K →
dcr

dt
= 4

r3 : ct = 0 & cr > R → divide(∇φ)

Rule r1 specifies that a cell of type 1 constantly creates φ.
Rule r2 specifies that a cell of type 0 starts growing at a lin-
ear rate, 4, when a threshold, K, of the morphogen has been
reached. Rule r3 then states that once a cell has reached a given
size, R, then it will divide towards the source of the morphogen.
This basic process results in a localised growth towards a grow-
ing tip, if the tip is on the surface then we see limb-like struc-
tures forming. This entire process is possible due to the cell
rules, the physical model, and the geometric transformations.

Figure 7 demonstrates the basic sequence of one growing
limb. The parameters of the model can affect the rate of growth
and size of the limb. The model is quite sensitive to the param-
eters, and some parameter ranges can result in either no limb
growth, or uncontrolled tumour-like growth. Finding the ap-
propriate parameter ranges can be done experimentally, but an
ideal growth model would have a minimal set of parameters,
each relating to some visual aspect of the model. In the case
of limb growth, an ideal set of parameters would be limb size,

Figure 7: A visualisation of how the edges (left) or the tetrahedra (right) of
a developing organism change over time. (top) An organism at the start of a
simulation has a cell chosen to be a growing tip (circled). (from top to bottom)
As morphogen diffuses, cells begin to grow and divide near the growing tip,
forcing the tip to the right and creating a limb-like structure.

growth speed, and limb length. Future work will look at build-
ing these kinds of models.

As shown in Figure 8, multiple limbs can be grown in the
same organism, simply by specifying multiple growing tips.
The re-use of components like this is an important feature of
a procedural geometry system, as it allows us to abstract away
from the level of cells to the level of limbs and bodies. How-
ever, because the limb model operates on the level of geometry
we get additional benefits such as a complex boundary form-
ing between the limb module and the body it grew from. This
complexity is difficult to achieve using module-based geometric
methods [62] and normally has to be achieved as a post process.

SDS forms can be influenced by spatial and environmental
factors, providing another level of control over a growing ge-
ometry. For example, we can restrict the growth of a structure
within a confined space (Figure 8), incorporate other objects in
the space (Figure 9), or include an attraction point which affects
the growth direction of the limbs (Figure 10).

Many environmental phenomenon such as phototropism or
chemotaxis could be included within the simulation. The re-
quirements of the user dictate which aspects are important for
each specific case. For example a form can be made to stick
to a geometric object as it grows, allowing vines to be grown
on a wall. This embedded physical interaction provides another
level of control over the system and the variety of situations it
can model.

Figure 11 illustrates a variation derived from the basic limb
model. In this example a timer (non-diffusing morphogen that
slowly decays) was added to the growing tip, causing it to stop
releasing the limb growth morphogen after a certain delay. It
then activates another morphogen which causes nearby cells to
grow slowly until they reach a specific size, resulting in buds
that form at the end of the limbs.

3.5. Efficiency
SDS can be computationally intensive, particularly for com-

7

Figure 8: A time series of an organism with six limbs. The limbs eventually collide with the bounding box. They continue to grow in the constrained space and the
physical model causes them to curve and bend, eventually filling the space as shown in Figure 1.

Figure 9: This simulation was initialised with a radially symmetric geometry with six growing tips placed upon a rock. Various snapshots of the simulation are
shown that demonstrate the limbs growing outwards and over the rock. The growth model includes a rule to allow the body to grow slowly over time (r4 : ct =

0 & cφ < K → dcr
dt = 4′). The stripes are generated by a morphogen timer that slowly decays within the growing tip. Once depleted the growing tip signals all

nearby cells to become stripe cells and then the timer is reset. The rate of decay of the timer directly influences how apart the stripes are.

Figure 10: This simulation incorporated an attraction point (shown as a black dot), just above the initial organism. Starting in the same configuration as in Figure
8, the growing tips had a small attraction force applied to them, which resulted in the developmental sequence shown.

8

Figure 11: This budded form was created using the limb bud model with an
extra rule added that caused the tentacle tips to start expanding after a short
time.

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

simulation time s

tim
e

pe
rf

ra
m

e
m

s

0

100

200

300

400

num
berofcells

Figure 12: Timing information for the model shown in Figure 9: simulation
time on the horizontal axis vs. CPU time per time step (blue) and number
of cells (red). The spikes in CPU time correspond to division of cells in the
growing model.

plex models with many cell divisions. As an example, the ex-
periment shown in Figure 9 is analysed here. This model took
approximately 5.7 minutes to generate to the stage shown in
the figure. The simulation machine was a standard desktop PC
with a dual core 2GHz processor and 2Gb RAM. Figure 12
shows plots of the virtual simulation time on the x-axis versus
the real time to compute (blue) and the number of cells cur-
rently in the simulation (red). In this experiment the number of
cells increases linearly over time. Cell division events for each
limb occur more or less simultaneously, due to the symmetric
initial conditions. The computation time plot shows the num-
ber of milliseconds the simulator takes to compute each step.
The base line is punctuated by large peaks that occur when the
cells divide, illustrating that the division algorithms take much
longer to process that the base algorithm for physical simula-
tion.

3.6. Current Limitations of the Limb Bud Model

The limb growth experiments presented here generate limbs
that are, internally, only one cell thick (see Figure 7). Concep-
tually the growth model is capable of generating limbs of arbi-
trary thickness (as demonstrated in [47]) simply by increasing
the rate of diffusion; however, generating different limb widths
has not yet been explored in the 3D model. Generating these
thin limbs results has some consequences which we briefly out-
line.

As discussed above, the limb structure develops because
cells are dividing toward the growing tip, pushing it outwards.
When generating limbs that are internally one cell thick, we
need to ensure that the initial configuration has a cell directly
below the growing tip, for without it there would be no internal
pressure for the tip to move outwards. To guarantee this con-
straint, we establish the initial conditions manually by adding a
vertex below all the growing tips. An important goal for future
work is to eliminate this manual intervention.

4. Discussion and Future Work

This paper presents a new approach in developmental mod-
elling for computer graphics. The Simplicial Developmental
System, or SDS, addresses some of the disadvantages of pre-
vious systems, such as L-systems or the CDM. It takes a fully
embedded and physically simulated approach, effectively mak-
ing it capable of a more accurate and diverse set of simulation
possibilities. SDS uses only a single geometric primitive (tetra-
hedral meshes), simplifying physical and developmental sim-
ulation, but conversely requiring far greater processing power
than previous systems to simulate the development of complex
structures. SDS is a new approach to generating forms and is
still the subject of active research. As such the examples do
not encompass all aspects of what is possible within the gen-
eral framework. Combining physical and biological simulation
of growth processes appears to be a very powerful methodol-
ogy, opening many possibilities for further research, a number
of which will be now be discussed.

Growing other sub-structures. The examples presented here
are only the initial steps towards what could be a highly ex-
pressive and powerful method for synthesising complex organic
form. The limb bud model was exploited in the examples to
generate limb- and tentacle-like sub-forms, and adding addi-
tional processes to expand the palette of interesting sub-forms
is currently under investigation. We envisage a wide range of
different processes within SDS that provide the artist with a
toolbox of different sub-form and pattern generating tools. It
would be highly beneficial to find a set of axiomatic processes
forming the core of this toolbox, and upon which other pro-
cesses could be built. One of these, for example, might be local
diffusion and directional proliferation, which forms the basis of
the limb bud model. Sub-forms such as tubular growths, folds,
rings and bone-like structures are amongst the kind of things we
could expect to see in a toolbox, along with methods for laying
them out using morphogen patterns and composing them into
more complex structures.

Patterning. Morphogen creation, destruction, diffusion and de-
cay plays the role of patterning within SDS. Distributions of
morphogens can direct specific parts of a mesh to grow, for ex-
ample, in the regions where limb development occurs. More
complex patterns could be achieved by multiplying two dif-
ferent morphogen gradients together. In general, functionally
composing morphogen gradients can lead to complex patterns

9

[63]. Another approach is to specify the equivalent of reaction-
diffusion equations [64], which could be achieved through the
existing rule-based framework. This latter approach, while dif-
ficult to control, would allow the specification of complex tex-
tural patterns, such as spots and stripes.

User friendliness. The procedural specification of an SDS form
involves the creation of cell rules that act on, and are activated
by, temporal patterns. In addition a number of different param-
eters, such as spring stiffness, tropism strength, viscosity, and
morphogen decay rate may be adjusted. Many of these param-
eters are abstract or irrelevant to the end user, and the specifi-
cation of rule-sets becomes more difficult for increasingly com-
plex forms. As discussed in §2.3, exogenous systems are of-
ten difficult to control from a form design perspective, which
is why past approaches have used, for example, evolutionary
search techniques to find appropriate parameters and rules. In
contrast, SDS allows the possibility of presenting higher-level
concepts to the user, such as Limb, Pattern and Attractor. These
building blocks could then be connected together and coupled
with a geometric description of the scene built using standard
3D modelling tools. A process of translation would then take
the high-level description and generate the appropriate cell pro-
grams.

Simulation method. The choice of integration schemes for the
soft-body and morphogen simulations were adequate to achieve
the initial results presented in this paper. However, these meth-
ods are crude and fail to correctly conserve physical properties,
such as the energy within the soft-body or the concentration of
morphogen in the cells. They are sometimes unstable and with-
out the correct choice of time step the physical simulation can
“blow up”. This is an especially significant problem when finer
geometric details are required. The use of a better integration
technique, specifically for the soft body simulation, would im-
prove the reliability and robustness of the simulation. Further
work is required to compare performance of different schemes
against different requirements, for example, speed versus geo-
metric detail.

Heterogenous material. The simulations presented in this pa-
per have all been performed using a homogeneous material (all
the spring stiffnesses are the same). One exciting avenue of re-
search would be to explore the creative possibilities of allowing
different material properties within the same organism. This
would allow us to have, for example, rigid bones, softer mus-
cle mass, and a jelly-like material all within the same structure.
Aside from the user-control issues (i.e., how would a user spec-
ify the formation of different materials), a major impediment
to achieving this is the physical simulation of such a material.
Incorporating highly stiff springs requires a large amount of
computation time due to the increased instability: a commonly
observed problem with mass-spring simulation [65]. Research
into real-time simulation of deformable bodies for surgical sim-
ulation may provide solutions, for example the hybrid approach
of Lin et al. [66] combines rigid and non-rigid materials in a
conceptually simple and fast model. Another simulation issue

is the refinement of heterogeneous material. For example, when
a cell divides in a heterogeneous region, what is an appropriate
procedure for deciding the physical properties of the new edges
and tetrahedra. Recent work into numerical coarsening [67]
may offer insight into a possible solution.

Transformations. Cell death is an obvious exclusion from the
transformations presented here. There are numerous ways a
transform analogous to cell death could be implemented – for
example performing cell division in “reverse”. Aside from mesh
simplification it is not clear the role cell death would play in this
system. Other interesting operators that could be researched are
ones that allow the surface to fuse together and split apart, per-
mitting changes in the topological quality of the surface (and
would allow biological phenomenon like gastrulation and neu-
rulation to be modelled.) In addressing some these factors, the
simulation-based approach of SDS will ideally become more
user-friendly and expressive.

In conclusion, computational simulation of biological mor-
phogenesis and development holds great promise as a general
purpose tool for computer graphics modelling. The idea of be-
ing able to grow a myriad of complex forms without the need
to directly and painstakingly model them by hand has obvious
appeal. The next stage in modelling development is to com-
bine the geometric complexity possible with models like CDM
with the direct embedding and full physical simulation of SDS.
This raises the issues of computational power (complex phys-
ical simulation is computationally expensive) and useful user
specification (the tradeoff between specification abstractions,
control and complexity). Addressing these issues is an active
area of on-going research.

5. Acknowledgements

The authors would like to thank the reviewers for their help-
ful comments and suggestions, in particular for highlighting the
numerical issues that can occur with the simulation techniques
used. This research was supported by an Australian Research
Council Discovery Project grant DP0772667.

Appendix A. Calculating the rest size of a tetrahedron

The rest size of a tetrahedron t with cells a,b,c and d can be
easily derived from Heron’s formula, where the lengths of the
tetrahedron’s edges are the sum of the adjacent cell’s radii. For

10

the sake of completeness it is included here.

R(t) =

√
ABCD

3(ar + dr)(br + dr)(cr + dr)
, with

A = w + x + y − z

B = w + x − y + z

C = w − x + y + z

D = −w + x + y + z

w = arbrcr

x = dr
√

brcr(ar + br + dr)(ar + cr + dr)

y = dr
√

arcr(ar + br + dr)(br + cr + dr)

z = dr
√

arbr(ar + cr + dr)(br + cr + dr).

References

[1] Shapeways.
URL http://www.shapeways.com/

[2] A. Smith, Plants, fractals, and formal languages, in: Proceedings of the
11th annual conference on Computer graphics and interactive techniques
(SIGGRAPH), Vol. 18, ACM, 1984, pp. 1–10.

[3] M. Lantin, Computer simulations of developmental processes, Tech. rep.,
SFU CMPT (1997).
URL ftp://fas.sfu.ca/pub/cs/TR/1997/CMPT97-24.pdf

[4] A. Sandberg, Models of development, Tech. rep., KTH, Stockholm
(2006).
URL http://www.nada.kth.se/ asa/Work/index.html

[5] J. L. Giavitto, C. Godin, O. Michel, P. Prusinkiewicz, Computational
models for integrative and developmental biology, Tech. rep. (2002).

[6] P. Prusinkiewicz, Modeling and visualization of biological structures, in:
Proceeding of Graphics Interface ’93, Toronto, Ontario, 1993, pp. 128–
137.

[7] P. Prusinkiewicz, Modeling plant growth and development, Current
Opinion in Plant Biology 7 (1) (2004) 79–83.
URL http://algorithmicbotany.org/papers/mpg.copb2004.html

[8] K. O. Stanley, R. Miikkulainen, A taxonomy for arti-
ficial embryogeny, Artificial Life 9 (2) (2003) 93–130.
doi:http://dx.doi.org/10.1162/106454603322221487.

[9] S. Kumar, P. J. Bentley, Mechanisms of oriented cell division in compu-
tational development, in: Proceedings of the first Australian Conference
on Artificial Life, Canberra, Australia, 2003.

[10] G. B. Ermentrout, L. Edelstein-Keshet, Cellular automata approaches to
biological modeling, Journal of Theoretical Biology 160 (1993) 97–133.

[11] G. W. Brodland, Computational modeling of cell sorting, tissue engulf-
ment, and related phenomena: A review, Applied Mechanics Reviews
57 (1) (2004) 47–76. doi:10.1115/1.1583758.
URL http://link.aip.org/link/?AMR/57/47/1

[12] A. Lindenmayer, An axiom system for the development of filamentous
organisms, in: Abstracts of the III International Congress on Logic,
Methodology and Philosophy of Science, Amsterdam, 1967, pp. 127–
128.

[13] P. Prusinkiewicz, A. Lindenmayer, The algorithmic beauty of plants, no.
xii, 228 in The virtual laboratory, Springer-Verlag, New York, 1990.

[14] C. Jirasek, P. Prusinkiewicz, B. Moulia, Integrating biomechanics into
developmental plant models expressed using l-systems, in: Plant biome-
chanics 2000 . Proceedings of the 3rd Plant Biomechanics Conference,
Freiburg-Badenweiler, August 27 to September 2, 2000., Georg Thieme
Verlag, Stuttgart, 2000, pp. 615–624.

[15] Z. Lam, S. A. King, Simulating tree growth based on internal and environ-
mental factors, in: GRAPHITE ’05: Proceedings of the 3rd international
conference on Computer graphics and interactive techniques in Australa-
sia and South East Asia, ACM Press, New York, NY, USA, 2005, pp.
99–107.

[16] J. Vaario, From evolutionary computation to computational evolution, In-
formatica (Slovenia) 18 (4).

[17] R. Měch, P. Prusinkiewicz, Visual models of plants interacting
with their environment, in: SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 1996, pp. 397–410.
doi:http://doi.acm.org/10.1145/237170.237279.

[18] G. Stiny, Shape: Talking about Seeing and Doing, MIT Press, 2006.
[19] K. Sims, Evolving virtual creatures, in: Computer Graphics, orlando,

florida Edition, ACM SIGGRAPH, 1994, pp. 15–22.
[20] J. A. Heisserman, Generative geometric design and boundary solid gram-

mars, Ph.D. thesis, Department of Architecture, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania (May 1991).

[21] S. Maierhofer, Rule-based mesh growing and generalized subdivision
meshes, Ph.D. thesis, Vienna University of Technology (2002).

[22] C. Smith, On vertex-vertex systems and their use in geometric and bio-
logical modelling, Ph.D. thesis, The University of Calgary (Apr. 2006).

[23] Y. I. Parish, P. M
”uller, Procedural modeling of cities, in: Proceedings of the 28th an-
nual conference on Computer graphics and interactive techniques (SIG-
GRAPH), ACM, 2001, pp. 301–308.

[24] J. McCormack, Evolutionary l-systems, in: P. F. Hingston, L. C. Barone,
Z. Michalewicz (Eds.), Design by Evolution: Advances in Evolutionary
Design, Natural Computing Series, Springer, 2008, pp. 168–196.

[25] G. Stiny, Pictorial and formal aspects of shape and shape grammars, no.
xv, 399 in ISR, Interdisciplinary systems research;, Birkhäuser, Basel;
Stuttgart, 1975.

[26] N. Greene, Voxel space automata: modeling with stochastic growth
processes in voxel space, in: SIGGRAPH ’89: Proceedings of
the 16th Annual Conference on Computer Graphics and Inter-
active Techniques, ACM Press, New York, 1989, pp. 175–184.
doi:http://doi.acm.org/10.1145/74333.74351.

[27] J. McCormack, Open problems in evolutionary music and art, in:
F. Rothlauf, J. Branke, S. Cagnoni, D. W. Corne, R. Drechsler, Y. Jin,
P. Machado, E. Marchiori, J. Romero, G. D. Smith, G. Squillero
(Eds.), EvoWorkshops, Vol. 3449 of Lecture Notes in Computer Science,
Springer, 2005, pp. 428–436.

[28] M. Eden, A Two-Dimensional Growth Process, in: J. Neyman (Ed.), Pro-
ceedings of the Fourth Berkeley Symposium on Mathematical Statistics
and Probability, Volume IV: Biology and Problems of Health, The Re-
gents of the University of California, 1961, pp. 223–239.

[29] S. Ulam, On some mathematical problems connected with patterns of
growth of figures, Proceedings of Symposia in Applied Mathematics 14
(1962) 215–224.

[30] Y. Kawaguchi, The art of the growth algorithm, in: C. G. Langton, K. Shi-
mohara (Eds.), Artificial Life V: Proceedings of the Fifth International
Workshop on the Synthesis and Simulation of Living Systems, MIT Press,
Nara, Japan, 1996, pp. 159–166.

[31] T. A. Witten, L. M. Sander, Diffusion-limited aggregation, a kinetic criti-
cal phenomenon, Phys. Rev. Letters 47 (1981) 1400–1403.

[32] P. Hogeweg, Evolving mechanisms of morphogenesis: on the interplay
between differential adhesion and cell differentiation, Journal of Theoret-
ical Biology 203 (2003) 317–333.

[33] T. M. Cickovski, C. Huang, R. Chaturvedi, T. Glimm, H. G. E. Hentschel,
M. S. Alber, J. A. Glazier, S. A. Newman, J. A. Izaguirre, A framework
for three-dimensional simulation of morphogenesis, IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 2 (3).

[34] J. McCormack, Creative ecosystems, in: A. Cardoso, G. Wiggins (Eds.),
Proceedings of the 4th International Joint Workshop on Computational
Creativity, 2007, pp. 129–136.

[35] J. McCormack, O. Bown, Life’s what you make: Niche construction and
evolutionary art, in: M. Giacobini, A. Brabazon, S. Cagnoni, G. A. D.
Caro, A. Ekárt, A. Esparcia-Alcázar, M. Farooq, A. Fink, P. Machado,
J. McCormack, M. O’Neill, F. Neri, M. Preuss, F. Rothlauf, E. Tarantino,
S. Yang (Eds.), EvoWorkshops, Vol. 5484 of Lecture Notes in Computer
Science, Springer, 2009, pp. 528–537.

[36] J. A. Kaandorp, Fractal Modelling: Growth and Form in Biology,
Springer-Verlag, 1994.

[37] J. A. Kaandorp, J. E. Kübler, The Algorithmic Beauty of Seaweeds,
Sponges and Corals, Springer, 2001.

[38] J. Combaz, F. Neyret, Semi–interactive morphogenesis, in: Proceedings
of the IEEE International Conference on Shape Modeling and Applica-
tions, 2006.

11

[39] C. H. Leung, M. Berzins, A computational model for organism growth
based on surface mesh generation, J. Comput. Phys. 188 (1) (2003) 75–
99. doi:http://dx.doi.org/10.1016/S0021-9991(03)00153-0.

[40] L. G. Harrison, S. Wehner, D. M. Holloway, Complex morphogenesis of
surfaces: theory and experiment on coupling of reaction diffusion pat-
terning to growth, Nonlinear Chemical Kinetics: Complex Dynamics and
Spatiotemporal Patterns, Faraday Discuss. 120 (2001) 277–294.

[41] K. W. Fleischer, A. H. Barr, Artificial Life III, Vol. XVII, Addison-
Wesley, Reading, Massachusetts, 1994, Ch. A Simulation Testbed for the
Study of Multicellular Development: The Multiple Mechanisms of Mor-
phogenesis, pp. 389–416.

[42] K. W. Fleischer, D. H. Laidlaw, B. L. Currin, A. H. Barr, Cellular texture
generation, in: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques (SIGGRAPH), ACM, 1995, pp. 239–
248.

[43] J. Miller, Evolving developmental programs for adaptation, morphogene-
sis, and self-repair, Advances in Artificial Life (2003) 256–265.

[44] G. Păun, From cells to computers: Computing with membranes (P sys-
tems), BioSystems 59 (3) (2001) 139–158.

[45] J. McCormack, Advances in Artificial Life (8th European Conference,
ECAL 2005), Vol. LNAI 3630, Springer-Verlag, Berlin; Heidelberg,
2005, Ch. A Developmental Model for Generative Media, pp. 88–97.

[46] S. A. Wainwright, Axis and circumference: the cylindrical shape of plants
and animals, no. viii, 132, Harvard University Press, Cambridge, Mass.,
1988.

[47] B. Porter, A developmental system for organic form synthesis, in: K. B.
Korb, M. Randall, T. Hendtlass (Eds.), ACAL, Vol. 5865 of Lecture Notes
in Computer Science, Springer, 2009, pp. 136–148.

[48] H. Si, Tetgen: A Quality Tetrahedral Mesh Generator and a 3D De-
launay Triangulator, retrieved from http://tetgen.berlios.de/ on
29.12.09.

[49] R. Bridson, R. Fedkiw, J. Anderson, Robust treatment of
collisions, contact and friction for cloth animation (2005)
2doi:http://doi.acm.org/10.1145/1198555.1198572.

[50] M. Müller, J. Stam, D. James, N. Thürey, Real time physics:
class notes, in: SIGGRAPH ’08: ACM SIGGRAPH 2008
classes, ACM, New York, NY, USA, 2008, pp. 1–90.
doi:http://doi.acm.org/10.1145/1401132.1401245.

[51] P. Eggenberger, Genome-physics interaction as a new concept to reduce
the number of genetic parameters in artificial evolution, in: R. Sarker,
R. Reynolds, H. Abbass, K.-C. Tan, R. McKay, D. Essam, T. Gedeon
(Eds.), Proceedings of the IEEE 2003 Congress on Evolutionary Compu-
tation, IEEE Press, Piscataway, NJ, 2003, pp. 191–198.

[52] M. J. M. de Boer, F. D. Fracchia, P. Prusinkiewicz, Lindenmayer Systems:
Impacts on Theoretical Computer Science, Computer Graphics, and De-
velopmental Biology, Springer-Verlag, 1992, Ch. A model for cellular
development in morphogenetic fields, pp. 351–370.

[53] M. Teschner, B. Heidelberger, M. Müller, M. Gross, A versatile and ro-
bust model for geometrically complex deformable solids, in: Proceedings
of Computer Graphics International, Heraklion, 2004, pp. 312–319.

[54] J. Dummer, A simple time-corrected ver-
let integration method, retrieved from
http://www.gamedev.net/reference/articles/article2200.asp

on 29.12.09. (June 2005).
[55] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, M. Gross, Op-

timized spatial hashing for collision detection of deformable objects, in:
Proceedings of Vision, Modeling, and Visualization, Munich, Germany,
2003, pp. 47–54.

[56] B. Heidelberger, M. Teschner, R. Keiser, M. Müller, M. Gross, Consistent
penetration depth estimation for deformable collision response, in: Pro-
ceedings of Vision, Modeling, Visualization, Stanford, USA, 2004, pp.
339–346.

[57] P. Agarwal, The cell programming language, Artificial Life 2 (1) (1994)
37–77.

[58] F. Stewart, T. Taylor, G. Konidaris, Metamorph: Experimenting with
genetic regulatory networks for artificial development, in: Proceedings
of the Eighth European Conference on Artificial Life, Springer–Verlag,
2005, pp. 108–117.

[59] F. Streichert, C. Spieth, H. Ulmer, A. Zell, Evolving the ability of limited
growth and self-repair for artificial embryos, in: Proceedings of the 7th
European Conference on Artificial Life, 2003, pp. 289–298.

[60] F. Dellaert, R. D. Beer, Toward an evolvable model of development for
autonomous agent synthesis, in: P. Maes, R. Brooks (Eds.), Artificial Life
IV, Proceedings of the Fourth International Workshop on the Synthesis
and Simulation of Living Systems, MIT Press, Cambridge, MA, 1994,
pp. 246–257.

[61] K. Fleischer, A multiple-mechanism developmental model for defining
self-organizing geometric structures, Ph.D. thesis, California Institute of
Technology, Pasadena, California (1995).

[62] B. Lintermann, O. Deussen, Interactive modeling of plants, IEEE Com-
puter Graphics & Applications 19 (1999) 2–11.

[63] K. O. Stanley, Exploiting regularity without development, in: Proceed-
ings of the AAAI Fall Symposium on Developmental Systems, AAAI
Press, Menlo Park, CA, 2006.

[64] A. M. Turing, The chemical basis of morphogenesis, Philosophical Trans-
actions of the Royal Society 237 (1952) 37–72.

[65] D. Baraff, A. Witkin, Dynamic simulation of non-penetrating flex-
ible bodies, SIGGRAPH Comput. Graph. 26 (2) (1992) 303–308.
doi:http://doi.acm.org/10.1145/142920.134084.

[66] S. Lin, Y.-S. Lee, R. J. Narayan, Printed Biomaterials, Springer, 2010, Ch.
Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force
Rendering for Bio-Object Modeling, pp. 19–37.

[67] L. Kharevych, P. Mullen, H. Owhadi, M. Desbrun, Numerical coarsening
of inhomogeneous elastic materials, ACM Trans. Graph. 28 (2009) 51:1–
51:8.

12

